CBSE Class 10 Mathematics Important Questions Chapter 11 Constructions

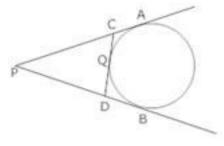
1 Marks Questions

1.	The length	of tangent fro	m a point A	at a	distance	of 5 cm	from	the	centre	of the	3
ci	rcle is 4 cm.	What will be t	ne radius of	circle	?						

- (a) 1 cm
- (b) 2 cm
- (c) 3 cm
- (d) none of these

Ans. c) 3 cm

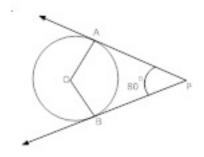
2. In the figure given below, PA and PB are tangents to the circle drawn from an external point P. CD is a third tangent touching the circle at Q. If PB = 12 cm and CQ = 3 cm, what is the length of PC?



- (a) 9 cm
- (b) 10 cm
- (c) 1 cm
- (d) 13 cm

Ans. (a) 9 cm

- 3. The tangent of a circle makes angle with radius at point of contact
- (a) 60°
- (b) 30°
- (c) 90°
- (d) none of these
- **Ans. (c)** 90 °
- 4. If tangent PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80 $^{\circ}$, then what is the value of $\angle POA$?



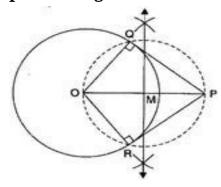
- (a) 30°
- (b) 50°
- (c) 70°
- (d) 90°
- **Ans. (b)** 50 °

CBSE Class 10 Mathematics Important Questions Chapter 11 Constructions

2 Marks Questions

1. In each of the following, give the justification of the construction also:

Draw a circle of radius 6 cm. From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.



Ans. Given: A circle whose centre is O and radius is 6 cm and a point P is 10 cm away from its centre.

To construct: To construct the pair of tangents to the circle and measure their lengths.

Steps of Construction:

- (a) Join PO and bisect it. Let M be the mid-point of PO.
- **(b)** Taking M as centre and MO as radius, draw a circle. Let it intersects the given circle at the points Q and R.
- (c) Join PQ and PR.

Then PQ and PR are the required two tangents.

By measurement, PQ = PR = 8 cm

Justification: Join OQ and OR.

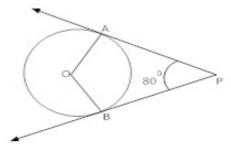
Since \angle OQP and \angle ORP are the angles in semicircles.

$$\therefore \angle OQP = 90^{\circ} = \angle ORP$$

Also, since OQ, OR are radii of the circle, PQ and PR will be the tangents to the circle at Q and

R respectively.

- Therefore, only two tangents can be draw.
- 2. In figure, PA and PB are tangents from P to the circle with centre O. R is a point on the circle, prove that PC + CR = PD + DR.



Ans. Since length of tangents from an external point to a circle are equal in length

$$\therefore PA = PB$$

$$CA = CR ...(i)$$

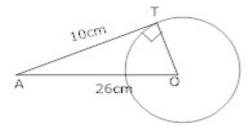
And
$$DB = DR$$

Now
$$PA = PB$$

$$\Rightarrow$$
 PC + CA = PD + DB

$$\Rightarrow$$
 PC + CR = PD + DR [By (i)]

3. The length of tangents from a point A at distance of 26 cm from the centre of the circle is 10cm, what will be the radius of the circle?



Ans. Since tangents to a circle is perpendicular to radius through the point of contact

In right $\Delta OTA = 90^{\circ}$, we have

$$OA^2 = OT^2 + AT^2$$

$$\Rightarrow$$
 (26)² = $OT^2 + (10)^2$

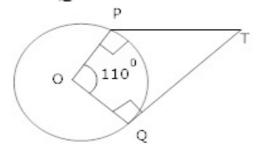
$$\Rightarrow OT^2 = 676 - 100$$

$$\Rightarrow OT^2 = 576$$

$$\Rightarrow OT = 24$$

Hence, radius of circle is 24 cm

4. In the given figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle POQ = 110^{\circ}$, then find $\angle PTO$.



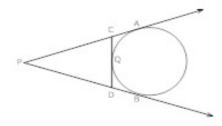
Ans. Since $\angle POQ + \angle PTO = 180^{\circ}$

$$[\because \angle OPT = 90^{\circ}, \angle OQT = 90^{\circ}]$$

$$\Rightarrow$$
 110° + $\angle PTQ$ = 180°

$$\Rightarrow \angle PTQ = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

5. In the figure, given below PA and PB are tangents to the circle drawn from an external point P. CD is thethird tangent touching the circle at Q. If PB = 10 cm and CQ = 2 cm, what is the length of PC?



Ans. PA=PB=10 cm

$$CQ = CA = 2 cm$$

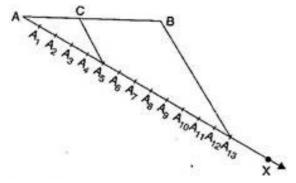
$$PC = PA - CA = 10 - 2 = 8 \text{ cm}$$

CBSE Class 10 Mathematics Important Questions Chapter 11 Constructions

3 Marks Questions

1. In each of the following, give the justification of the construction also:

Draw a line segment of length 7.6 cm and divide it in the ratio 5 : 8. Measure the two parts.



Ans. Given: A line segment of length 7.6 cm.

To construct: To divide it in the ration 5 : 8 and to measure the two parts.

Steps of construction:

- (a) From any ray AX, making an acute angle with AB.
- **(b)** Locate 13 (=5 + 8) points A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_7 , A_8 , A_9 , A_{10} , A_{11} , A_{12} and A_{13} on AX such that $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5 = A_5A_6 = A_6A_7 = A_7A_8 = A_8A_9 = A_9A_{10} = A_{10}A_{11} = A_{11}A_{12} = A_{12}A_{13}$.
- **(c)** Join BA₁₃.
- (d) Through the point A_5 , draw a line parallel to $A_{13}B$ intersecting AB at the point C.

Then, AC : CB = 5 : 8

On measurement, AC = 3.1 cm, CB = 4.5 cm

Justification:

 \therefore A₅C || A₁₃B [By construction]

$$\frac{AA_5}{A_5A_{13}} = \frac{AC}{CB}$$
 [By Basic Proportionality Theorem]

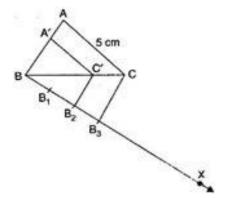
But
$$\frac{AA_5}{A_5A_{13}} = \frac{5}{8}$$
 [By construction]

Therefore,
$$\frac{AC}{CB} = \frac{5}{8}$$

$$\Rightarrow$$
 AC : CB = 5 : 8

2. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle

Ans. To construct: To construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.



- (a) Draw a triangle ABC of sides 4 cm, 5 cm and 6 cm.
- (b) From any ray BX, making an acute angle with BC on the side opposite to the vertex A.
- (c) Locate 3 points B_1 , B_2 and B_3 on BX such that $BB_1 = B_1B_2 = B_2B_3$.

- (d) Join B_3C and draw a line through the point B_2 , draw a line parallel to B_3C intersecting BC at the point C.
- (e) Draw a line through C' parallel to the line CA to intersect BA at A'.

Then, A'BC' is the required triangle.

Justification:

 \mathbb{T} B₃C || B₂C' [By construction]

$$\frac{BB_2}{B_2B_3} = \frac{BC'}{C'C}$$
 [By Basic Proportionality Theorem]

But
$$\frac{BB_2}{B_2B_3} = \frac{2}{1}$$
 [By construction]

Therefore,
$$\frac{BC'}{C'C} = \frac{2}{1}$$

$$\Rightarrow \frac{C'C}{BC'} = \frac{1}{2}$$

$$\Rightarrow \frac{C'C}{BC'} + 1 = \frac{1}{2} + 1$$

$$\Rightarrow \frac{C'C + BC'}{BC'} = \frac{1+2}{2}$$

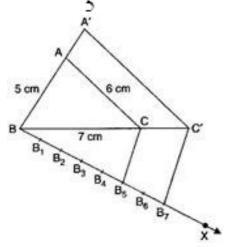
$$\Rightarrow \frac{BC}{BC'} = \frac{3}{2}$$

$$\Rightarrow \frac{BC'}{BC} = \frac{2}{3}$$
(i)

- ∵ CA || C'A'[By construction]
- \triangle BC'A' $\sim \Delta$ BCA[AA similarity]

$$\therefore \frac{AB'}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{2}{3} \text{ [From eq. (i)]}$$

3. Construct a triangle with sides 6 cm, 6 cm and 7 cm and then another triangle whose sides are $\frac{7}{2}$ of the corresponding sides of the first triangle.



Ans. To construct: To construct a triangle of sides 5 cm, 6 cm and 7 cm and then a triangle similar to it whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Steps of construction:

- (a) Draw a triangle ABC of sides 5 cm, 6 cm and 7 cm.
- (b) From any ray BX, making an acute angle with BC on the side opposite to the vertex A.
- (c) Locate 7 points B_1 , B_2 , B_3 , B_4 , B_5 , B_6 and B_7 on BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5 = B_5B_6 = B_6B_7$.
- (d) Join B_5C and draw a line through the point B_7 , draw a line parallel to B_5C intersecting BC at the point C.
- (e) Draw a line through C' parallel to the line CA to intersect BA at A'.

Then, A'BC' is the required triangle.

Justification:

C'A' || CA [By construction]

$$\triangle$$
 ABC \sim \triangle A'BC' [AA similarity]

$$\frac{AB}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC}$$
 [By Basic Proportionality Theorem]

$$B_7C' \parallel B_5C$$
 [By construction]

$$\triangle$$
 BB₇C' \sim \triangle BB₅C [AA similarity]

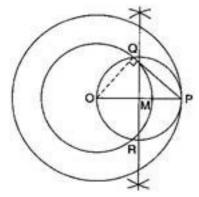
But
$$\frac{BB_5}{BB_7} = \frac{5}{7}$$
 [By construction]

Therefore,
$$\frac{BC}{BC'} = \frac{5}{7}$$

$$\Rightarrow \frac{BC'}{BC} = \frac{7}{5}$$

$$\frac{AB}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{7}{5}$$

4. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also verify the measurement by actual calculation.



Ans. To construct: To construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its lengths. Also to verify the measurements by actual calculation.

- (a) Join PO and bisect it. Let M be the mid-point of PO.
- **(b)** Taking M as centre and MO as radius, draw a circle. Let it intersects the given circle at the point Q and R.

(c) Join PQ.

Then PQ is the required tangent.

By measurement, PQ = 4.5 cm

By actual calculation,

$$PQ = \sqrt{(OP)^2 + (OQ)^2}$$

$$=\sqrt{6^2-4^2}$$

$$=\sqrt{36-16}$$

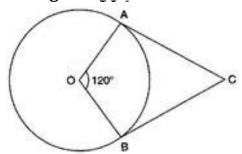
$$=\sqrt{20}=4.47$$
 cm

Justification: Join OQ. Then \angle PQO is an angle in the semicircle and therefore,

$$\angle PQO = 90^{\circ} \Rightarrow PQ \perp OQ$$

Since, OQ is a radius of the given circle, PQ has to be a tangent to the circle.

5. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°



Ans. To construct: A pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°

- (a) Draw a circle of radius 5 cm with centre O.
- **(b)** Draw an angle AOB of 120°
- (c) At A and B, draw 90° angles which meet at C.

Then AC and BC are the required tangents which are inclined to each other at an angle of 60°

Justification:

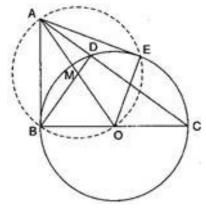
- \therefore Z OAC = 90° and OA is a radius. [By construction]
- ... AC is a tangent to the circle.
- \angle OBC = 90° and OB is a radius. [By construction]
- ... BC is a tangent to the circle.

Now, in quadrilateral OACB,

$$\angle$$
 AOB + \angle OAC + \angle OBC + \angle ACB = 360°

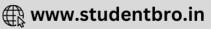
[Angle sum property of a quadrilateral]

6. Let ABC be a right triangle in which AB = 6 cm, BC = 8 cm and \angle B = 90° BD is the perpendicular from B on AC. The circle through B, C, D is drawn. Construct the tangents from A to this circle.



Ans. To construct: A right triangle ABC with AB = 6 cm, BC = 8 cm and \angle B = 90° BD is the perpendicular from B on AC and the tangents from A to this circle.

- (a) Draw a right triangle ABC with AB = 6 cm, BC = 8 cm and \angle B = 90° . Also, draw perpendicular BD on AC.
- **(b)** Join AO and bisect it at M (here O is the centre of circle through B, C, D).



- **(c)** Taking M as centre and MA as radius, draw a circle. Let it intersects the given circle at the points B and E.
- (d) Join AB and AE.

Then AB and AE are the required two tangents.

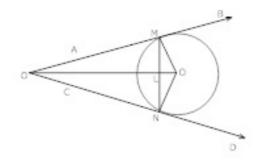
Justification: Join OE.

Then, \angle AEO is an angle in the semicircle.

$$\Rightarrow$$
 AE \perp OE

Since OE is a radius of the given circle, AE has to be a tangent to the circle. Similarly AB is also a tangent to the circle.

7. Prove that the tangents drawn at the ends of a chord of a circle make equal angles with chord.



Ans. Let NM be chord of circle with centre C.

Let tangents at M.N meet at the point O.

Since OM is a tangent

:: ON is a tangent

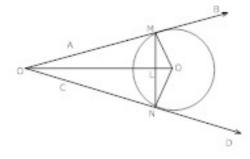
Again in ΔCMN , CM = CN = r

$$\therefore \angle OMC - \angle CMN = \angle ONC - \angle CNM$$

$$\Rightarrow \angle OML = \angle ONL$$

Thus, tangents make equal angle with the chord

8. In the given figure, if AB = AC, prove that BE = EC.



Ans. Since tangents from an exterior point A to a circle are equal in length

$$\therefore AD = AF....(i)$$

Similarly, tangents from an exterior point B to a circle are equal in length

$$\therefore BD = BE....(2)$$

Similarly, for C

Now AB = AC

$$\therefore AB - AD = AC - AD$$

$$\Rightarrow AB - AD = AC - AF \dots [By (i)]$$

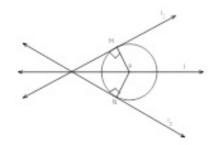
$$\Rightarrow BD = CF$$

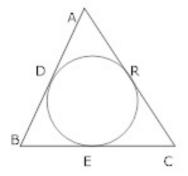
$$\Rightarrow BE = CF....[By (ii)]$$

$$\Rightarrow BE = CE \ [\because BD = BE, CE = CF] \ [By (iii)]$$

9. Find the locus of centre of circle with two intersecting lines.

Ans.





Let l_1, l_2 be two intersection lines.

Let a circle with centre P touch the two lines $\it l_1$ and $\it l_2$ at M and N respectively.

PM = PN [Radii of same circle]

 Γ . P is equidistance from the lines $\it l_1$ and $\it l_2$

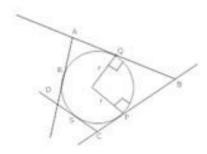
Similarly, centre of any other circle which touch the two intersecting lines l_1, l_2 will be equidistant from l_1 and l_2

dash . P lies on $ec{l}$ a bisector of the angle between $ec{l}_1$ and $ec{l}_2$

["." The locus of points equidistant from two intersecting lines is the pair of bisectors of the angle between the lines]

Hence, locus of centre of circles which touch two intersecting lines is the pair of bisectors of the angles between the two lines.

10. In the given figure, a circle is inscribed in a quadrilateral ABCD in which $\angle B = 90^{\circ}$. If AD = 23 cm, AB = 29 cm and DS = 5 cm, find the radius of the circle.



Ans. In the given figure, $\mathit{OP} \perp \mathit{BC}$ and OQ^{\wedge} BA

Also,
$$OP = OQ = r$$

 $\therefore OPBQ$ is a square

$$BP = BQ = r$$

But DR = DS = 5 cm ...(i)

$$\therefore AR = AD - DR$$
$$= 23 - 5 = 18 cm$$

$$AQ = AR = 18 cm$$

$$BQ=AB-AQ$$

$$=20-18=11 cm$$

$$r = 11 \, cm$$

CBSE Class 10 Mathematics Important Questions Chapter 11 Constructions

4 Marks Questions

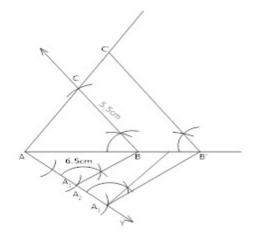
1. Construct a $\triangle ABC$ in which $AB=6.5\,cm$, $\angle B=60^\circ$ and $BC=5.5\,cm$. Also construct a triangle ABC similar to $\triangle ABC$ whose each side is $\frac{3}{2}$ times the corresponding side of the $\triangle ABC$.

Ans. Steps of construction:

- 1. Draw a line segment AB = 6.5cm.
- 2. At B construct $\angle ABX = 60^{\circ}$.
- 3. With B as centre and radius BC = 5.5cm draw an arc intersecting BX at C.
- 4. Join AC.

Triangle so obtained is the required triangle.

- 5. Construct an acute angle ĐBAY at A on opposite side of vertex C of $\triangle ABC$.
- 6. Locate 3 points A_1 , A_2 , A_3 on AY such that $AA_1 = A_1A_2 = A_2A_3$.
- 7. Join A_2 to B and draw the line through A_3 parallel to A_2B intersecting the extended line segment AB at B'.
- 8. Draw a line through B' parallel to BC intersecting the extended line seg.AC at C'.
- 9. Δ AB'C' so obtained is the required triangle

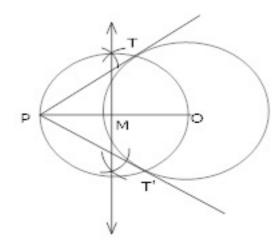


2. Draw a circle of radius 4 cm from a point P, 7 cm from the centre of the circle, draw a pair of tangents to the circle measure the length of each tangent segment.

Ans. Steps of construction:

- 1. Take a point O in the plane of a paper and draw a circle of the radius 4 cm.
- 2. Make a point P at a distance of 7 cm from the centre O and Join OP.
- 3. Bisect the line segment OP. Let M be the mid-point of OP.
- 4. Taking M as a centre and OM as radius draw a circle to intersect the given circle at the points T and T'.
- 5. Join PT and PT', then PT and PT' are required tangents.

$$PT = PT' = 5.75 \text{ cm}$$



3. Draw a right triangle in which the sides containing the right angle are 5cm and 4cm. Construct a similar triangle whose sides are $\frac{5}{3}$ times the sides of the above triangle.

- 1. Draw a line segment BC = 5 cm.
- 2. At B construct $\angle CBX = 90^{\circ}$.
- 3. With B as centre and radius = 4 cm draw an arc intersecting the ray BX at A.
- 4. Join AC to obtain the required $\triangle ABC$.

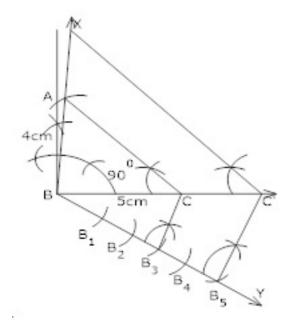
5. Draw any ray BY making an acute angle with BC on the opposite side to the vertex A.

6. Locate 5 points B_1 , B_2 , B_3 , B_4 and B_5 on BY so that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$.

7. Join B_3 to C and draw a line through B_5 parallel to B_3C intersecting the extended line segment BC at C'.

8. Draw a line through C' parallel to CA intersecting the extended line segment BA at A'.

Thus, DA'BC' is the required right triangle.



4. Construct a circle whose radius is equal to 4 cm. Let P be a point whose distance from its centre is 6 cm. Construct two tangents to it from P.

Ans. Steps of construction:

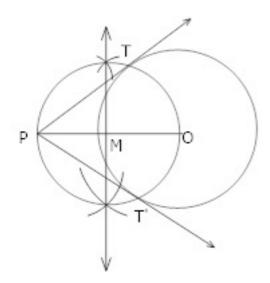
1. Take a point O in the plane of the paper and draw a circle of radius 4cm.

2. Make a point P at a distance of 6cm from the centre O and join OP.

3. Bisect the line segment OP. Let the point of bisection be M.

4. Taking M as centre and OM as radius, draw a circle to intersect the given circle at the point T and T'.

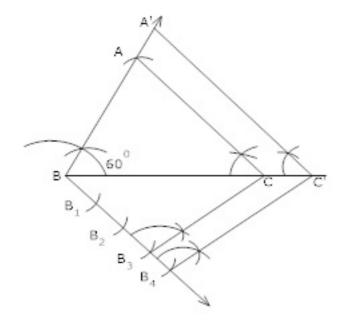
5. Join PT and PT' to get the required tangents.



5. Draw a triangle ABC with sides BC = 6.3 cm, AB = 5.2 cm and $\angle ABC = 60^{\circ}$. Then construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle ABC$.

- 1. Draw a line segment BC = 6.3 cm.
- 2. At B make $\angle CBX = 60^{\circ}$.
- 3. With B as centre and radius equal to 5.2 cm, draw an arc intersecting BX at A.
- 4. Join AC, then DABC is the required triangle.
- 5. Draw any ray by making an acute angle with BC on the opposite side to the vertex A.
- 6. Locate the points B_1 , B_2 , B_3 and B_4 on BY so that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.
- 7. Join B_3 to C and draw a line through B_4 parallel to B_3C intersecting the extended line segment BC at C'.
- 8. Draw a line through C' parallel to CA intersecting the extended line segment BA at A'.

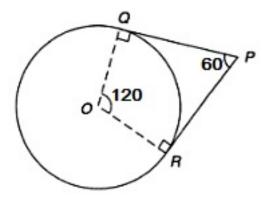
 Thus, DA'BC' is the required triangle.



6. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at $60\,^\circ\,$.

Ans. Steps of construction:

- 1. Draw a circle with center O and radius 5cm.
- 2. Draw any diameter AOC.
- 3. Construct $\angle BOC = 60^{\circ}$ meeting the circle at B.
- 4. At A and B draw perpendiculars to OA and OB intersecting at P.
- 5. PA and PB are required tangents and $\angle APB = 60^{\circ}$.

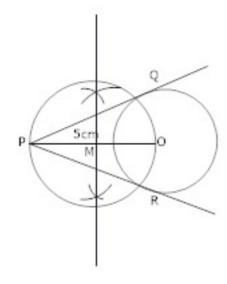


7. Draw the tangents at the extremities of a diameter AB of a circle of radius 2cm. Are

these tangents parallel? Given reasons.

Ans. Steps of construction:

- 1. Draw a circle of radius 2 cm.
- 2. Draw any diameter AOB.
- 3. Draw $AT \perp AB$ and $BM \perp AB$.
- 4. AT and BM are tangents extremities of the diameter AB.
- 5. $\therefore \angle 1 = 90^{\circ}, \angle 2 = 90^{\circ}, \therefore \angle 1 = \angle 2$, they are alternate angles. $\therefore AT \parallel BM$

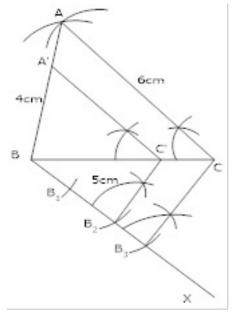


8. Construct a $\triangle ABC$ in which AB = 4 cm, BC = 5 cm and AC = 6 cm. Now construct a triangle similar to $\triangle ABC$ such that each of its sides is two-third of the corresponding sides of $\triangle ABC$. Also prove your assertion.

- 1. Draw $\triangle ABC$ with sides BC = 5 cm, AB = 4 cm and AC = 6 cm.
- 2. Below BC make acute $\angle CBX$
- 3. Along BX mark off three points B_1 , B_2 and B_3 such that $BB_1 = B_1B_2 = B_2B_3$.
- 4. Join B_3C .

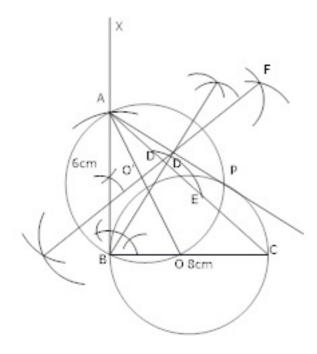
5. Draw $B_2C' \parallel B_3C$ also $C'A' \parallel CA$

Thus, D $\triangle BC$ ' A ' is the required triangle



9. Construct a $\triangle ABC$ in which AB = 6.5 cm $\angle B$ = 60° and BC = 5.5 cm. Also, construct a $\triangle AB'C'$ similar to $\triangle ABC$ whose each side is $\frac{3}{2}$ times the corresponding sides of the $\triangle ABC$.

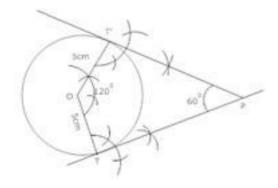
- 1. Construct a $\triangle ABC$ is which AB = 6.5cm, $\angle B = 60^{\circ}$ and BC = 5.5cm.
- 2. Draw a ray AX making any acute angle with AB on the opposite side of the vertex C.
- 3. Cut three equal parts from AX say $AX_1 = X_1X_2 = X_2X_3$.
- 4. Join X_2 to B.
- 5. From X_3 draw $X_3B' \parallel X_2B$ at B'.
- 6. At B' draw $B'C' \parallel BC$ intersecting AY at C'.
- 7. $\triangle AB \ C$ is required triangle similar to $\triangle ABC$.



10. Draw a pair of tangents to a circle of radius 5cm which are inclined to each other at $60^{\,\circ}\,$.

Ans. Steps of construction:

- 1. Draw a circle with centre O and radius 5cm.
- 2. Draw any radius OT.
- 3. Construct $\angle TOT' = 180^{\circ} 60^{\circ} = 120^{\circ}$.
- 4. Draw $TP \perp OT$ and $TP \perp OT$. Then PT and PT are the two required tangents such that $\angle TPT$ ' = 60°. Here, PT = PT '

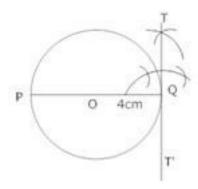


11. Draw a circle of radius 4 cm with centre O. Draw a diameter POQ. Through P or Q

draw tangent to the circle.

Ans. Steps of construction:

- 1. Draw a circle of radius 4 cm.
- 2. Draw diameter POQ.
- 3. Construct $\angle PQT = 90^{\circ}$.
- 4. Produce PQ to T', then TQT' is the required tangent at the point Q.

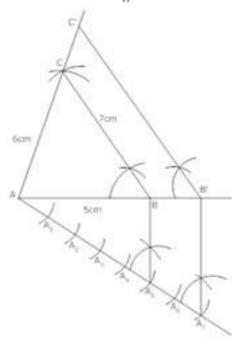


12. Construct a triangle with sides 5cm, 6cm and 7cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of first triangle.

- 1. Draw a line segment AB = 5cm.
- 2. With A as centre and radius 6cm draw an arc.
- 3. Again B as centre and radius 7cm draw another arc cutting the previous arc at C. Join AC and BC,thenDABC is required triangle.
- 4. Draw any ray AX making acute angle.
- 5. Locate 7 points A_1 , A_2 , A_3 , A_4 , A_5 , A_6 and A_7 on AX so that $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5 = A_5A_6 = A_6A_7.$
- 6. Join A_5 to B and draw a line through A_7 parallel to A_5B intersecting the extended line

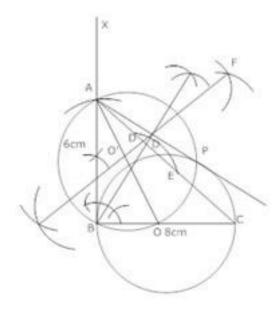
segment AB at B'.

7. Draw $B'C' \parallel BC$, then $\Delta AB'C'$ is the required triangle



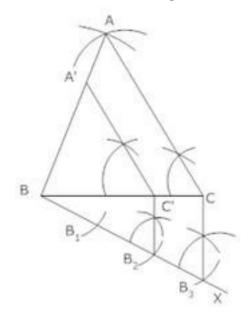
13. Let ABC be a right triangle in which AB = 6 cm, BC = 8 cm and $\angle B = 90^{\circ}$. BD is the perpendicular from B on AC. The circle through B, C and D is drawn construct the tangents from A to this circle.

- 1. Draw $\triangle ABC$ with BC = 8 cm, AB = 6 cm and $\angle B = 90^{\circ}$.
- 2. Draw perpendicular BD from B to AC.
- 3. Let O be the mid-point of BC. Draw a circle with centre O and radius OB = OC. This circle will pass through the point D.
- 4. Join AO and bisect AO.
- 5. Draw a circle with centre O ' and O ' A as radius cuts the previous circle at B and P.
- 6. Join AP, AP and AB are required tangents drawn from A to the circle passing through B,C and D.



14. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle

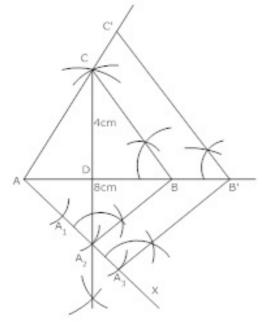
- 1. Draw $\triangle ABC$ with AB = 4 cm, BC = 6 cm and AC = 5 cm.
- 2. Draw any ray BX making an acute angle with BC on the side opposite to the vertex A.
- 3. Locate 3 points B_1 , B_2 and B_3 on BX so that $BB_1 = B_1B_2 = B_2B_3$.
- 4. Join B_3C and draw $B_2C'\parallel B_3C$.
- 5. Draw a line through C 'such that C 'A' \parallel CA Then, ΔA 'B C ' is the required triangle.



15. Construct an isosceles triangle whose base is 8cm and altitude 4cm and then another triangle whose sides are $1\frac{1}{2}$ times the corresponding sides of the isosceles triangle.

Ans. Steps of construction:

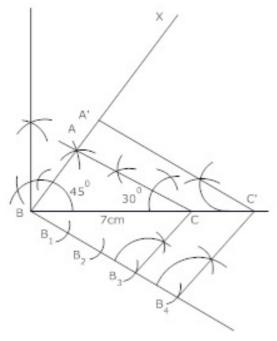
- 1. Draw line segment AB = 8 cm.
- 2. Draw perpendicular bisector of AB which intersects AB at D.
- 3. Cut DC = 4 cm. Join AC and BC. Thus, $\triangle ABC$ is the required triangle.
- 4. Draw acute angle $\angle BAX$.
- 5. Locate 3 points A_1 , A_2 and A_3 on AX so that $AA_1 = A_1A_2 = A_2A_3$.
- 6. Join A_2B and draw $A_3B' \parallel A_2B$.
- 7. Draw $B'C' \parallel BC$.
- 8. $\triangle AB \ C'$ is the required triangle



16. Draw a $\triangle ABC$ with side BC = 7cm, $\angle B = 45^{\circ}$ and $\angle A = 105^{\circ}$, then construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle ABC$.

Ans. Steps of construction:

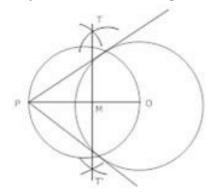
- 1. Draw $\triangle ABC$ in which BC = 7cm, $\angle B = 45^{\circ}$ and $\angle C = 30^{\circ}$.
- 2. Locate 4 points B_1 , B_2 , B_3 and B_4 on BZ such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.
- 3. Join B_3C and draw $B_4C' \parallel B_3C$.
- 4. Now Draw $C'A' \parallel CA$
- 5. $\Delta BC'A'$ is the required triangle.



17. Construct a circle whose radius is equal to 4 cm. Let P be a point whose distance from its centre is 6 cm. Construct two tangents to it from P.

- 1. Draw a circle with centre O and radius 4 cm.
- 2. Mark point P at a distance of 6 cm from the centre O and join OP.
- 3. Bisect the line segment OP. Let the point of bisection be M.
- 4. Take M as centre and OM as radius draw a circle to intersect the given circle at the points T and T'.

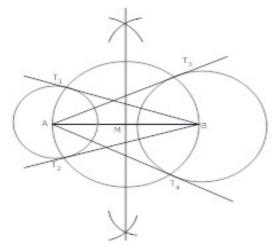
5. Join PT and PT' to get the required tangents.



18. Draw a line segment AB of length 8 cm taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre to the other circle.

Ans. Steps of construction:

- 1. Draw a line segment AB = 8 cm.
- 2. Taking A as centre and radius = 4 cm draw a circle.
- 3. Taking B as centre and radius = 3 cm draw another circle.
- 4. Bisect the line segment AB, let the point of bisection be M.
- 5. Taking M as centre and MA as radius, draw a circle intersecting the given circles at the point T_1 , T_2 , T_3 and T_4 .



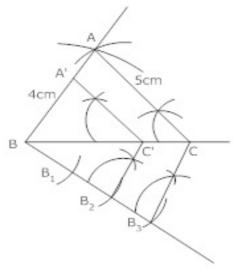
19. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it

whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

Ans. Steps of construction:

- 1. Draw $\triangle ABC$ in which AB = 4 cm, BC = 6 cm and AC = 5 cm.
- 2. Draw acute $\angle CBX$
- 3. Locate 3 points B_1 , B_2 and B_3 on BX so that $BB_1 = B_1B_2 = B_2B_3$.
- 4. Join B_3C and draw $B_2C'\parallel B_3C$.
- 5. Now Draw $C'A' \parallel CA$

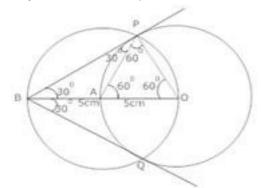
Thus, $\Delta A'BC'$ is the required triangle.



20. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60° .

- 1. Draw a circle with centre O and radius OA = 5 cm.
- 2. Extend OA to B such that OA = AB = 5 cm
- 3. With A as centre draw a circle of radius OA = AB = 5 cm. Suppose it intersect the circle drawn in step 1 at the points P and Q.

4. Join BP and BQ. Then BP and BQ are the required tangents.



Justification: In $\triangle OAP$,

$$OA = OP = 5 cm(r)$$

Also, AP = 5 cm

 ΔOAP is an equilateral triangle

$$\Rightarrow \angle PAO = 60^{\circ}$$

$$\Rightarrow \angle BAP = 120^{\circ}$$

In $\triangle BAP$,

AB = AP and $\angle BAP = 120^{\circ}$

$$\therefore \angle ABP = \angle APB = 30^{\circ}$$

Similarly, $\angle ABQ = \angle AQB = 30^{\circ}$

$$\Rightarrow \angle PBQ = 60^{\circ}$$

21. From a point P two tangents are drawn to a circle with centre O. If OP = diameter of the circle, show that $\triangle APB$ is equilateral

Ans. Join OP.

Suppose OP meets the circle at Q. Join AQ.

We have

i.e., OP = diameter

... OQ + PQ = diameter

PQ = Diameter – radius [:: OQ = r]

... PQ = radius

Thus, OQ = PQ = radius

Thus, OP is the hypotenuse of right triangle

OAP and Q is the mid-point of OP

$$\triangle OA = AQ = OQ$$

["." mid-point of hypotenuse of a right triangle is equidistant from the vertices]

 $\Rightarrow \Delta OAQ$ is equilateral

$$\Rightarrow \angle AOQ = 60^{\circ}$$

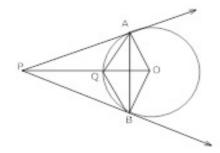
So,
$$\angle APO = 30^{\circ}$$

Also
$$PA = PB \Rightarrow \angle PAB = \angle PBA$$

But
$$\angle APB = 60^{\circ}$$

$$\angle APB = 60^{\circ} : \angle PAB = \angle PBA = 60^{\circ}$$

Hence, $\triangle APB$ is equilateral.



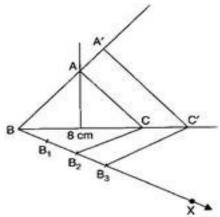
22. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $1\frac{1}{2}$ times the corresponding sides of the isosceles triangle.

Ans. To construct: To construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then a triangle similar to it whose sides are $1\frac{1}{2}\left(\text{or }\frac{3}{2}\right)$ of the corresponding sides of the first triangle.

Steps of construction:

- (a) Draw BC = 8 cm
- (b) Draw perpendicular bisector of BC. Let it meets BC at D.
- (c) Mark a point A on the perpendicular bisector such that AD = 4 cm.
- (d) Join AB and AC. Thus \triangle ABC is the required isosceles triangle.
- (e) From any ray BX, making an acute angle with BC on the side opposite to the vertex A.
- (f) Locate 3 points B_1 , B_2 and B_3 on BX such that $BB_1 = B_1B_2 = B_2B_3$.
- (g) Join B_2C and draw a line through the point B_3 , draw a line parallel to B_2C intersecting BC at the point C.
- (h) Draw a line through C' parallel to the line CA to intersect BA at A'.

Then, A'BC' is the required triangle.



Justification:

- ∵ C'A' || CA [By construction]
- \triangle ABC \sim \triangle A'BC' [AA similarity]
- $\frac{AB}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC}$ [By Basic Proportionality Theorem]
- $B_3C' \parallel B_2C$ [By construction]
- ... \triangle BB₃C' \sim \triangle BB₂C [AA similarity]

But
$$\frac{BB_3}{BB_2} = \frac{3}{2}$$
 [By construction]

Therefore,

$$\Rightarrow \frac{BC'}{BC} = \frac{3}{2}$$

$$\frac{AB}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{3}{2}$$

23. Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and \angle ABC = 60° . Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of triangle ABC.

Ans. To construct: To construct a triangle ABC with side BC = 6 cm, AB = 5 cm and \angle ABC = 60° and then a triangle similar to it whose sides are $\frac{3}{4}$ of the corresponding sides of the first triangle ABC.

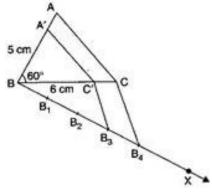
- (a) Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and \angle ABC = 60° .
- **(b)** From any ray BX, making an acute angle with BC on the side opposite to the vertex A.

(c) Locate 4 points B_1 , B_2 , B_3 and B_4 on BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.

(d) Join B_4C and draw a line through the point B_3 , draw a line parallel to B_4C intersecting BC at the point C.

(e) Draw a line through C' parallel to the line CA to intersect BA at A'.

Then, A'BC' is the required triangle.



Justification:

 $B_4C \parallel B_3C'$ [By construction]

$$\frac{BB_3}{BB_4} = \frac{BC'}{BC}$$
 [By Basic Proportionality Theorem]

But
$$\frac{BB_3}{BB_4} = \frac{3}{4}$$
 [By construction]

Therefore,
$$\frac{BC'}{BC} = \frac{3}{4}$$
(i)

∵ CA || C'A' [By construction]

 \triangle BC'A' $\sim \triangle$ BCA [AA similarity]

$$\frac{AB'}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{3}{4} \text{ [From eq. (i)]}$$

24. Draw a triangle ABC with side BC = 7 cm, \angle B = 45°, \angle A = 105°. Then construct a

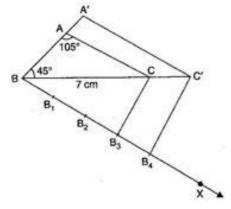
triangle whose sides are $\frac{4}{3}$ times the corresponding sides of \triangle ABC.

Ans. To construct: To construct a triangle ABC with side BC = 7 cm, \angle B = 45° and \angle C = 105° and then a triangle similar to it whose sides are $\frac{4}{3}$ of the corresponding sides of the first triangle ABC.

Steps of construction:

- (a) Draw a triangle ABC with side BC = 7 cm, \angle B = 45° and \angle C = 105°.
- (b) From any ray BX, making an acute angle with BC on the side opposite to the vertex A.
- (c) Locate 4 points B_1 , B_2 , B_3 and B_4 on BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.
- (d) Join B_3C and draw a line through the point B_4 , draw a line parallel to B_3C intersecting BC at the point C.
- (e) Draw a line through C' parallel to the line CA to intersect BA at A'.

Then, A'BC' is the required triangle.



Justification:

- \therefore B₄C' || B₃C [By construction]
- $\therefore \Delta BB_4C' \sim \Delta BB_3C$ [AA similarity]
- $\frac{BB_4}{BB_3} = \frac{BC'}{BC}$ [By Basic Proportionality Theorem]

But
$$\frac{BB_4}{BB_3} = \frac{4}{3}$$
 [By construction]

Therefore,
$$\frac{BC'}{BC} = \frac{4}{3}$$
(i)

- CA C'A' [By construction]
- \triangle BC'A' $\sim \triangle$ BCA [AA similarity]

$$\frac{AB}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{4}{3}$$
 [From eq. (i)]

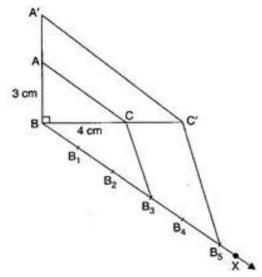
25. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. Then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle

Ans. To construct: To construct a right triangle in which sides (other than hypotenuse) are of lengths 4 cm and 3 cm and then a triangle similar to it whose sides are $\frac{5}{3}$ of the corresponding sides of the first triangle ABC.

Steps of construction:

- (a) Draw a right triangle in which sides (other than hypotenuse) are of lengths 4 cm and 3 cm.
- (b) From any ray BX, making an acute angle with BC on the side opposite to the vertex A.
- (c) Locate 5 points B_1 , B_2 , B_3 , B_4 and B_5 on BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$.
- (d) Join B_3C and draw a line through the point B_5 , draw a line parallel to B_3C intersecting BC at the point C.
- (e) Draw a line through C' parallel to the line CA to intersect BA at A'.

Then, A'BC' is the required triangle.



Justification:

 $B_5C' \parallel B_3C$ [By construction]

 \triangle BB₅C' \sim \triangle BB₃C [AA similarity]

$$\frac{BB_5}{BB_3} = \frac{BC'}{BC}$$
 [By Basic Proportionality Theorem]

But
$$\frac{BB_5}{BB_3} = \frac{5}{3}$$
 [By construction]

Therefore,
$$\frac{BC'}{BC} = \frac{5}{3}$$
(i)

∵ CA || C'A' [By construction]

 \triangle BC'A' $\sim \triangle$ BCA [AA similarity]

$$\frac{AB}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{5}{3}$$
 [From eq. (i)]

26. Draw a circle of radius 3 cm. Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q.

Ans. To construct: A circle of radius 3 cm and take two points P and Q on one of its extended

diameter each at a distance of 7 cm from its centre and then draw tangents to the circle from these two points P and Q.

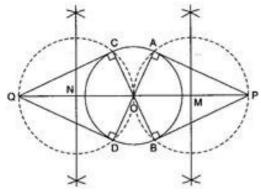
Steps of Construction:

- (a) Bisect PO. Let M be the mid-point of PO.
- **(b)** Taking M as centre and MO as radius, draw a circle. Let it intersects the given circle at the points A and B.
- (c) Join PA and PB.

Then PA and PB are the required two tangents.

- **(d)** Bisect QO. Let N be the mid-point of QO.
- **(e)** Taking N as centre and NO as radius, draw a circle. Let it intersects the given circle at the points C and D.
- **(f)** Join QC and QD.

Then QC and QD are the required two tangents.



Justification: Join OA and OB.

Then \angle PAO is an angle in the semicircle and therefore \angle PAO= 90°.

$$\Rightarrow$$
 PA \perp OA

Since OA is a radius of the given circle, PA has to be a tangent to the circle. Similarly, PB is also a tangent to the circle.

Again join OC and OD.

Then \angle QCO is an angle in the semicircle and therefore \angle QCO= 90°.

Since OC is a radius of the given circle, QC has to be a tangent to the circle. Similarly, QD is also a tangent to the circle.

27. Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle.

Ans. To construct: A line segment of length 8 cm and taking A as centre, to draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Also, to construct tangents to each circle from the centre to the other circle.

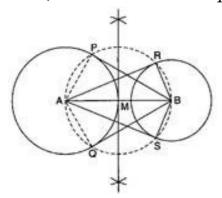
Steps of Construction:

- (a) Bisect BA. Let M be the mid-point of BA.
- **(b)** Taking M as centre and MA as radius, draw a circle. Let it intersects the given circle at the points P and Q.
- (c) Join BP and BQ.

Then, BP and BQ are the required two tangents from B to the circle with centre A.

- (d) Again, Let M be the mid-point of AB.
- **(e)** Taking M as centre and MB as radius, draw a circle. Let it intersects the given circle at the points R and S.
- **(f)** Join AR and AS.

Then, AR and AS are the required two tangents from A to the circle with centre B.



Justification: Join BP and BQ.

Then \angle APB being an angle in the semicircle is 90°

$$\Rightarrow$$
 BP \perp AP

Since AP is a radius of the circle with centre A, BP has to be a tangent to a circle with centre A. Similarly, BQ is also a tangent to the circle with centre A.

Again join AR and AS.

Then \angle ARB being an angle in the semicircle is 90°

$$\Rightarrow$$
 AR \perp BR

Since BR is a radius of the circle with centre B, AR has to be a tangent to a circle with centre B. Similarly, AS is also a tangent to the circle with centre B.

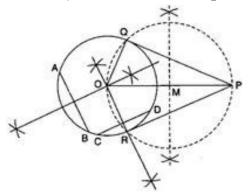
28. Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.

Ans. To construct: A circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.

- (a) Draw a circle with the help of a bangle.
- **(b)** Take two non-parallel chords AB and CD of this circle.
- **(c)** Draw the perpendicular bisectors of AB and CD. Let these intersect at O. Then O is the centre of the circle draw.
- (d) Take a point P outside the circle.
- (e) Join PO and bisect it. Let M be the mid-point of PO.
- **(f)** Taking M as centre and MO as radius, draw a circle. Let it intersects the given circle at the points Q and R.

(g) Join PQ and PR.

Then PQ and PR are the required two tangents.



Justification: Join OQ and OR.

Then, \angle PQO is an angle in the semicircle.

$$\Rightarrow$$
 \angle PQO = 90°

$$\Rightarrow$$
 PQ \perp OQ

Since OQ is a radius of the given circle, PQ has to be a tangent to the circle. Similarly PR is also a tangent to the circle.

